Abstract

In an attempt to gain a degree of control over the mechanical and degradation properties of poly(lactic acid) [PLA], large-scale efforts are underway to alter the phase morphology of PLA through chemical and physical modification. Consistent with this theme, our work aims to adjust the molecular architecture of highly amorphous PLA with an increasing concentration of hydroxy-terminated oligomeric poly(hexamethylene succinate) [PHS]. Gel-permeation chromatography (GPC) verifies the enhanced presence of PHS in the blends with a concomitant reduction in number-average molecular weight as the weight fraction of PHS is raised from 0.10 to 0.40. Differential scanning calorimetry (DSC) indicates amorphous phase compatibility between PHS and PLA at weight compositions of 10/90 and 20/80. However, as the amount of PHS approaches 30 and 40 wt%, the PHS exhibits the ability to crystallize independently from the induced PLA crystalline phase. Dynamic mechanical thermal analysis (DMTA) illustrates variable behavior of the materials under tension as a consequence of structural alterations generated by the oligoester. Finally, preliminary results suggest that these alterations may suppress the hydrolytic degradation of PLA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call