Abstract

Noncovalent C-H/pi interactions are prevalent in biochemistry and are important in molecular recognition. In this work, we present potential energy curves for methane-benzene, methane-phenol, and methane-indole complexes as prototypes for interactions between C-H bonds and the aromatic components of phenylalanine, tyrosine, and tryptophan. Second-order perturbation theory (MP2) is used in conjunction with the aug-cc-pVDZ and aug-cc-pVTZ basis sets to determine the counterpoise-corrected interaction energy for selected complex configurations. Using corrections for higher-order electron correlation determined with coupled-cluster theory through perturbative triples [CCSD(T)] in the aug-cc-pVDZ basis set, we estimate, through an additive approximation, results at the very accurate CCSD(T)/aug-cc-pVTZ level of theory. Symmetry-adapted perturbation theory (SAPT) is employed to determine the physically significant components of the total interaction energy for each complex.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call