Abstract

With the aim of understanding the electronic excitation, charge or reactive species transfers occurring during irradiation, we studied the role of the aromatic content on ethylene/styrene random copolymers (PES) and on cyclohexane/benzene glasses (amorphous organic solids). Radiation-induced modifications were monitored in situ, at the molecular level, using Fourier transform infrared spectroscopy (FTIR). Irradiations were performed under a vacuum, and thanks to in situ measurements, oxidation was avoided. We followed both the C═C bond creation in the aliphatic moiety and the destruction of the aromatic moiety. The influence of the irradiation temperature was investigated by irradiating samples at room temperature and at 11 K. At such a low temperature, long-range migration hardly occurs and its influence is considerably reduced or could even vanish. Therefore, low temperature irradiation gives insight on the relative influence of reactive species transport and electronic excitation and charge transport. We found that the effect of lowering the PES irradiation temperature from room temperature to 11 K is small, indicating a minor role for the reactive species transport. Moreover, the two chosen systems allow the examination of the relative magnitude of intra- and intermolecular transfers. We demonstrate that, under conditions where reactive species are almost frozen, intermolecular transfers are very efficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.