Abstract

ABSTRACTA series of aliphatic–aromatic poly(carbonate‐co‐ester)s poly(butylene carbonate‐co‐terephthalate)s (PBCTs), with weight‐average molecular weight of 113,000 to 146,000 g/mol, were synthesized from dimethyl carbonate, dimethyl terephthalate, and 1,4‐butanediol via a two‐step polycondensation process using tetrabutyl titanate as the catalyst. The PBCTs, being statistically random copolymers, show a single Tg over the entire composition range. The thermal stability of PBCTs strongly depends on the molar composition. Melting temperatures vary from 113 to 213°C for copolymers with butylene terephthalate (BT) unit content higher than 40 mol %. The copolymers have a eutectic melting point when about 10 mol % BT units are included. Crystal lattice structure shifts from the poly(butylene carbonate) to the poly(butylene terephthalate) type crystal phase with increasing BT unit content. DSC and WAXD results indicate that the PBCT copolymers show isodimorphic cocrystallization. The tensile modulus and strength decrease first and then increase according to copolymer composition. The enzymatic degradation of the PBCT copolymers was also studied. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 41952.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.