Abstract

Off-plane reflection gratings can be used to provide high throughput and spectral resolution in the 0.3-2.0 keV band, allowing for unprecedented diagnostics of energetic astrophysical processes. A grating spectrometer consists of multiple aligned gratings intersecting the converging beam of a Wolter-I telescope. Each grating will be aligned such that the diffracted spectra overlap at the focal plane. Misalignments will degrade both spectral resolution and effective area. In this paper we present a summary of analytical alignment tolerance calculations, including an investigation of diffraction efficiency alignment dependence. Our plan for extending this work to future modeling and simulation is laid out. Finally, we report on the status of laboratory techniques to achieve these tolerances for flight-like optics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.