Abstract

If multiple discrete flaws are detected that are in close proximity to one another, alignment rules are used to determine whether the flaws should be treated as nonaligned or as coplanar. Alignment rules are defined in many fitness-for-service codes and standards in the world. However, the criteria of the alignment rules are different in these codes and standards. This paper introduces the current alignment rules and, in addition, interaction of stress intensity factors for nonaligned through-wall flaws was calculated by finite element analysis. Also, brittle fracture experiments were performed on carbon steel plates with two nonaligned flaws. From these calculations and experiments, authors studied the effect of stress intensity factor interaction on fracture behavior and proposed a new alignment rule for linear elastic fracture mechanics evaluation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.