Abstract

Cellulose Electro-Active Paper (EAPap) has potential as a smart material due to its advantages of biodegradability, lightweight, air actuation, large displacement output, low actuation voltage and low power consumption. However, improvement of its small output force and low actuating frequency band still remain as drawbacks. In this study, asymmetrical arrangement of Multi-Walled Carbon Nanotubes (MWNTs) in cellulose matrix was investigated to resolve drawbacks. Corona discharging technique was used by means of DC electrophoresis of MWNTs in cellulose matrix. To make MWNTs mixed cellulose EAPap, cellulose fibers were well dissolved in 8%(w/w) LiCl/DMAc (N,N-dimethyl acetamide) by swelling procedure followed by solvent exchange technique. MWNTs were well dispersed in the cellulose solution by sonication for 2 hours, and the suspension was spin-coated on an ITO (Indium tin oxide) coated glass, and high DC electric field was given to the spincoated suspension for 3 hours at 40°C. The structure of MWNT/Cellulose film was characterized by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). It was seen that most of MWNTs were moved and biased toward cathode, and film having double layer-like structure was made.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.