Abstract

During high magnetic field solidification processing there is evidence for the alignment of nanoscale metallic particles with elongated morphologies that nucleate from a liquid metal. Such alignment occurs well above the Curie temperature of the particle where the magneto-crystalline anisotropy energy and exchange energy contributions are negligible. The main driving force for alignment is the magnetic shape anisotropy. Current understanding of the phenomenon is not adequate to quantify the effect of particle size, aspect ratio, temperature and the magnetic field on particle alignment. We demonstrate a Monte Carlo approach coupled with a scaling law for the dipole–dipole interaction energy as a function of the particle size to identify the conditions under which such alignment is possible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call