Abstract

Using simulation and numerical self-consistent field theory of an unentangled diblock copolymer melt, we study the interplay between relaxation of molecular conformations from a highly stretched, nonequilibrium state and structure formation of the local, conserved density during self-assembly from a disordered state. We observe that the planar elongation of molecular conformations in the initial, disordered state results in an alignment of lamella normals perpendicular to the stretch direction during the subsequent self-assembly. Although thermodynamically the parallel orientation is favored, the alignment of the lamella normal perpendicular to the stretch direction is characterized by the larger growth rate of composition fluctuations during the spinodal ordering process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call