Abstract
With the development of soft materials for applications in flexible tactile sensors, metal particles/insulated polymer composites have been studied for many years. This article proposes a method to prepare carbon iron particles (CIPs)/polydimethylsiloxane (PDMS) conductive composite with low percolation threshold and highly piezoresistive stain sensitivity. CIPs-PDMS composites with various filler volume fraction were cured under a magnetic field over 1.0 T to create chain-like structure resulting in anisotropy of conductive materials. The electrical resistivity for the longitudinal direction were measured as a function of filler volume fraction to understand the electrical percolation behavior. In this study, the percolation threshold of CIPs-PDMS composite cured under a magnetic field can be as low as 0.1 vol.%, which is much less than most of those studies in particulate composites. Meanwhile, the effects of compressive strain on the electrical properties of CIPs-PDMS composites were also investigated. The strain sensitivity depends on filler volume fraction and decreases with the increasing of compressive strain. It has been found that the composites containing a small amount of CI particles curing under a magnetic field exhibit a high strain sensitivity of over 150. The microstructures were measured by using a scanning electron microscope (SEM), and the results were also reported in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.