Abstract

Nonlinear optical (NLO) crystals assume an irreplaceable role in the development of laser science and technologies, yet the reasonable design of a high-performance NLO crystal remains difficult owing to the unpredictability of inorganic structures. In this research, we report the fourth polymorph of KMoO3(IO3), i.e., δ-KMoO3(IO3), to understand the effect of different packing patterns of basic building units on structures and properties. Among four polymorphs of KMoO3(IO3), the different stacking patterns of Λ-shaped cis-MoO4(IO3)2 units result in α- and β-KMoO3(IO3) featuring nonpolar layered structures, whereas γ- and δ-KMoO3(IO3) display polar frameworks. Theoretical calculations and structure analysis reveal that IO3 units can be regarded as the main source of its polarization in δ-KMoO3(IO3). Further property measurements show that δ-KMoO3(IO3) exhibits a large second-harmonic generation response (6.6 × KDP), a wide band gap (3.34 eV), and a broad mid-infrared transparency region (∼10 μm), which demonstrates that adjusting the arrangement of the Λ-shaped basic building units is an effective approach for rationally designing NLO crystals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call