Abstract
We demonstrate effective control of the morphology, defect content and vertical alignment of ZnO nanorod (NR) arrays grown by a solution method by simply varying the hexamine concentration during growth. We show that the amine acts both as a growth ‘stabilizer’ and ‘surfactant’ and controls both Zn release for ZnO formation and caps non-polar planes, respectively. Competition between these ‘stabilizer’ and ‘surfactant’ roles facilitates morphology, alignment and defect content control of 1D ZnO NR arrays. Well aligned, prismatic, defect (Zn interstitial) controlled ZnO NR arrays grown with a 1M amine concentration show higher photocatalytic degradation of Methylene Blue dye solutions under UV irradiation. Shallow donor zinc interstitials readily supply electrons which may increase the space charge near the nano-catalyst surface. The increased band bending associated with the interfacial electric field in the space charge region may then better facilitate the separation of photogenerated carriers and thus enhance the photocatalytic performance. Understanding the role of amine in the solution growth of 1D ZnO NR arrays holds great promise for tailoring ZnO NR functionalities for various potential applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.