Abstract

Polyploid genomes pose several inherent challenges to population genetic analyses. While alignment-based methods are fundamentally limited in their applicability to polyploids, alignment-free methods bypass most of these limits. We investigated the use of Mash, a k-mer analysis tool that uses the MinHash method to reduce complexity in large genomic data sets, for basic population genetic analyses of polyploid sequences. We measured the degree to which Mash correctly estimated pairwise genetic distance in simulated haploid and polyploid short-read sequences with various levels of missing data. Mash-based estimates of genetic distance were comparable to alignment-based estimates, and were less impacted by missing data. We also used Mash to analyse publicly available short-read data for three polyploid and one diploid species, then compared Mash results to published results. For both simulated and real data, Mash accurately estimated pairwise genetic differences for polyploids as well as diploids as much as 476 times faster than alignment-based methods, though we found that Mash genetic distance estimates could be biased by per-sample read depth. Mash may be a particularly useful addition to the toolkit of polyploid geneticists for rapid confirmation of alignment-based results and for basic population genetics in reference-free systems or those with only poor-quality sequence data available.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call