Abstract
It is well known that in liquid crystal (LC)-based active polarimetry, alignment and temperature effects impact polarimeter performance. Practically speaking, when constructing a polarimetric measurement system from LC variable retarders (LCVRs), unavoidable alignment and temperature uncertainties will occur, leading to systematic error that propagates to the Mueller matrix. Typical calibration methods use only a single metric to assess polarimeter performance (the condition number) and often ignore the relationship between systematic error and specific Mueller matrix elements. Here we explore alignment and temperature effects in a Stokes generator and polarimeter, each consisting of two LCVRs, through a series of simulations to calibrate the polarimeter and measure the Mueller matrix of air. We achieve this by modifying an existing LCVR model to incorporate alignment and temperature effects. This new approach offers insight into employing LCVRs individually and associating particular Mueller matrix element error with specific LCVR effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.