Abstract

We investigated the effect of an anisotropic silicate layer on the alignment and orientational proliferation of hexagonally packed cylinder microdomains of a block copolymer in the presence of a clay by using synchrotron small angle X-ray scattering (SAXS), rheology, and transmission electron microscopy (TEM). The block copolymer employed in this study was polystyrene-block-polyisoprene-block-polystyrene copolymer (SIS). The degree of intercalation of the clay in the presence of SIS was examined by wide angle X-ray diffraction (WAXD).Almost all of the HEX cylinders in neat SIS are aligned toward the flow direction after large amplitude oscillatory shearing is applied to the specimens. However, some tactoids in nanocomposites are not aligned, although most tactoids are also aligned to the flow direction. Due to HEX cylinders near tactoids, which are not aligned to the flow direction, the orientational factor of HEX cylinders in SIS/clay nanocomposites is smaller than that of neat SIS. However, once HEX cylinders in SIS/clay nanocomposites are degenerated after experiencing body-centered cubic microdomains, the decrease in the orientational factor from original aligned HEX is smaller compared with neat SIS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.