Abstract
Snakebite is a serious health issue in tropical and subtropical areas of the world and results in various pathologies, such as hemotoxicity, neurotoxicity, and local swelling, blistering, and tissue necrosis around the bite site. These pathologies may ultimately lead to permanent morbidity and may even be fatal. Understanding the chemical and biological properties of individual snake venom toxins is of great importance when developing a newer generation of safer and more effective snakebite treatments. Two main approaches to ionizing toxins prior to mass spectrometry (MS) analysis are electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI). In the present study, we investigated the use of both ESI-MS and MALDI-MS as complementary techniques for toxin characterization in venom research. We applied nanofractionation analytics to separate crude elapid venoms using reversed-phase liquid chromatography (RPLC) and high-resolution fractionation of the eluting toxins into 384-well plates, followed by online LC-ESI-MS measurements. To acquire clear comparisons between the two ionization approaches, offline MALDI-MS measurements were performed on the nanofractionated toxins. For comparison to the LC-ESI-MS data, we created so-called MALDI-MS chromatograms of each toxin. We also applied plasma coagulation assaying on 384-well plates with nanofractionated toxins to demonstrate parallel biochemical profiling within the workflow. The plotting of post-column acquired MALDI-MS data as so-called plotted MALDI-MS chromatograms to directly align the MALDI-MS data with ESI-MS extracted ion chromatograms allows the efficient correlation of intact mass toxin results from the two MS-based soft ionization approaches with coagulation bioassay chromatograms. This facilitates the efficient correlation of chromatographic bioassay peaks with the MS data. The correlated toxin masses from ESI-MS and/or MALDI-MS were all around 6-8 or 13-14 kDa, with one mass around 20 kDa. Between 24 and 67% of the toxins were observed with good intensity from both ionization methods, depending on the venom analyzed. All Naja venoms analyzed presented anticoagulation activity, whereas pro-coagulation was only observed for the Pseudonaja textillis venom. The data of MALDI-MS can provide complementary identification and characterization power for toxin research on elapid venoms next to ESI-MS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.