Abstract

Highly oriented tin oxide (SnO2) nanowire network (nanonets) based devices fabricated through photolithography-free techniques are studied. These nanowire networks are studied at submillimeter scales for their utilization as the active material in thin film transistors for macroelectronics. The SnO2 nanowire network transistors show excellent device characteristics and possess electron mobilities of ∼7.5 cm2 V−1 s−1 and on/off ratios between 106 and 108 with channel lengths ranging from 75 to 175 μm. Exposure of the SnO2 nanonet transistors to the ambient results in positive threshold voltage shifts due to electron trapping by oxygen at the nanowire surface. On the contrary, the electrical properties of the devices remained unchanged upon passivation by a polystyrene (PS) layer, which demonstrates a practical way to enhance the device performance in air. These results suggest that SnO2 nanonets that offer fault tolerance, flexibility, and high transparency due to low areal coverage could be a suitable can...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.