Abstract

Co is used as a catalyst for chemical vapor deposition (CVD) of vertically aligned multi-walled carbon nanotubes (CNTs) in a tube furnace at atmospheric pressure. C 2H 2 and NH 3 were used for the carbon feedstock and reaction control, respectively. The CVD process parameters determine the chemical properties of the Co particles and subsequently the morphologies and field emission behavior of CNTs as they strongly depend upon the catalyst condition. The flow rate ratio of NH 3 to C 2H 2 is shown to be central to the synthesis of vertically aligned CNTs. Repeatable synthesis of vertically aligned CNTs at atmospheric pressure in a tube furnace is cost effective for large area deposition of such structures which may be used, for example, in vacuum field emission devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.