Abstract

Iron-based nanoparticles are prepared by a laser-induced chemical vapor deposition (CVD) process. They are characterized as body-centered Fe and Fe 2O 3 (maghemite/magnetite) particles with sizes ≤5 and 10 nm, respectively. The Fe particles are embedded in a protective carbon matrix. Both kind of particles are dispersed by spin-coating on SiO 2/Si(1 0 0) flat substrates. They are used as catalyst to grow carbon nanotubes by a plasma- and filaments-assisted catalytic CVD process (PE-HF-CCVD). Vertically oriented and thin carbon nanotubes (CNTs) were grown with few differences between the two samples, except the diameter in relation to the initial size of the iron particles, and the density. The electron field emission of these samples exhibit quite interesting behavior with a low turn-on voltage at around 1 V/μm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call