Abstract

Climate warming and biological invasions by alien species are two key factors threatening the world’s biodiversity. To date, their impact has largely been studied independently, and knowledge on whether climate warming will promote invasions relies strongly on bioclimatic models. We therefore set up a study to experimentally compare responses to warming in native and alien plant species. Ten congeneric species pairs were exposed to ambient and elevated temperature (+3°C) in sunlit, climate-controlled chambers, under optimal water and nutrient supply to avoid interaction with other factors. All species pairs combined, total plant biomass reacted differently to warming in alien versus native species, which could be traced to significantly different root responses. On average, native species became less productive in the warmer climate, whereas their alien counterparts showed no response. The three alien species with the strongest warming response (Lathyrus latifolius, Cerastium tomentosum and Artemisia verlotiorum) are currently non-invasive but all originate from regions with a warmer climate. Still, other alien species that also originate from warmer regions became less or remained equally productive. Structural or ecophysiological acclimation to warming was largely absent, both in native and alien species, apart from light-saturated photosynthetic rate, where warming tended to restrain the native but not the alien species. A difference in the capacity to acclimate photosynthetic rates to the new climate may therefore have caused the contrasting biomass response. Future experiments are needed to ascertain whether climate warming can effectively tip the balance between native and alien competitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.