Abstract
BackgroundRecurrent drought associated with climate change is a major constraint to wheat (Triticum aestivum L.) productivity. This study aimed to (i) quantify the effects of addition/substitution/translocation of chromosome segments from wild relatives of wheat on the root, physiological and yield traits of hexaploid wheat under drought, and (ii) understand the mechanism(s) associated with drought tolerance or susceptibility in wheat-alien chromosome lines.MethodsA set of 48 wheat-alien chromosome lines (addition/substitution/translocation lines) with Chinese Spring background were used. Seedling root traits were studied on solid agar medium. To understand the influence of drought on the root system of adult plants, these 48 lines were grown in 150-cm columns for 65 d under full irrigation or withholding water for 58 d. To quantify the effect of drought on physiological and yield traits, the 48 lines were grown in pots under full irrigation until anthesis; after that, half of the plants were drought stressed by withholding water for 16 d before recording physiological and yield-associated traits.ResultsThe alien chromosome lines exhibited altered root architecture and decreased photochemical efficiency and seed yield and its components under drought. The wheat-alien chromosome lines T5DS·5S#3L (TA5088) with a chromosome segment from Aegilops speltoides (5S) and T5DL.5 V#3S (TA5638) with a chromosome segment from Dasypyrum villosum (5 V) were identified as drought tolerant, and the drought tolerance mechanism was associated with a deep, thin and profuse root system.ConclusionsThe two germplasm lines (TA5088 and TA5638) could be used in wheat breeding programs to improve drought tolerance in wheat and understand the underlying molecular genetic mechanisms of root architecture and drought tolerance.
Highlights
Recurrent drought associated with climate change is a major constraint to wheat (Triticum aestivum L.) productivity
The highest variation along PC1 was caused by TA5088 (7%) followed by TA5638 (6.5%), and in PC2 the highest variation was caused by TA5088 (3.5%) followed by TA7659 (2.5%) (Fig. 1b)
The representative tolerant (TA5088 and TA5638) and susceptible genotypes (TA3583 and TA5584) for different traits were compared with a background check (CS) for root, physiological and yield traits to understand the mechanism of tolerance or susceptibility
Summary
Recurrent drought associated with climate change is a major constraint to wheat (Triticum aestivum L.) productivity. This study aimed to (i) quantify the effects of addition/substitution/translocation of chromosome segments from wild relatives of wheat on the root, physiological and yield traits of hexaploid wheat under drought, and (ii) understand the mechanism(s) associated with drought tolerance or susceptibility in wheat-alien chromosome lines. Studies have shown that the introduction of alien chromosome segments from wild relatives into wheat have increased tolerance or resistance to drought [10], high temperatures [11], salinity [12], and water-logging [13]. To utilize the genes and alleles conferring abiotic and biotic stress tolerance from wild relatives of wheat, different genetic materials in the form of addition, substitution, and translocation lines have been developed after laborious efforts in the last few decades [18]. Some translocation lines of wheat-Agropyron elongatum and wheat-rye have been studied for their response to drought stress [4, 10, 19], and lines with rye translocation 1BL-1RS have been used in cultivars across the world to enhance drought tolerance
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.