Abstract

BackgroundPatient stratification is a critical task in clinical decision making since it can allow physicians to choose treatments in a personalized way. Given the increasing availability of electronic medical records (EMRs) with longitudinal data, one crucial problem is how to efficiently cluster the patients based on the temporal information from medical appointments. In this work, we propose applying the Temporal Needleman-Wunsch (TNW) algorithm to align discrete sequences with the transition time information between symbols. These symbols may correspond to a patient’s current therapy, their overall health status, or any other discrete state. The transition time information represents the duration of each of those states. The obtained TNW pairwise scores are then used to perform hierarchical clustering. To find the best number of clusters and assess their stability, a resampling technique is applied.ResultsWe propose the AliClu, a novel tool for clustering temporal clinical data based on the TNW algorithm coupled with clustering validity assessments through bootstrapping. The AliClu was applied for the analysis of the rheumatoid arthritis EMRs obtained from the Portuguese database of rheumatologic patient visits (Reuma.pt). In particular, the AliClu was used for the analysis of therapy switches, which were coded as letters corresponding to biologic drugs and included their durations before each change occurred. The obtained optimized clusters allow one to stratify the patients based on their temporal therapy profiles and to support the identification of common features for those groups.ConclusionsThe AliClu is a promising computational strategy to analyse longitudinal patient data by providing validated clusters and by unravelling the patterns that exist in clinical outcomes. Patient stratification is performed in an automatic or semi-automatic way, allowing one to tune the alignment, clustering, and validation parameters. The AliClu is freely available at https://github.com/sysbiomed/AliClu.

Highlights

  • Patient stratification is a critical task in clinical decision making since it can allow physicians to choose treatments in a personalized way

  • Gmax −gmin +1 gistep is the number of gaps analysed, M is the number of bootstrapped samples, and K = Kmax − Kmin + 1 is the number of clusters considered

  • The linkage method that produced the best results for the agglomerative clustering was Ward’s method; it was adopted in the remaining experiments

Read more

Summary

Introduction

Patient stratification is a critical task in clinical decision making since it can allow physicians to choose treatments in a personalized way. Given the increasing availability of electronic medical records (EMRs) with longitudinal data, one crucial problem is how to efficiently cluster the patients based on the temporal information from medical appointments. We propose applying the Temporal Needleman-Wunsch (TNW) algorithm to align discrete sequences with the transition time information between symbols. These symbols may correspond to a patient’s current therapy, their overall health status, or any other discrete state. The transition time information represents the duration of each of those states. The obtained TNW pairwise scores are used to perform hierarchical clustering. To find the best number of clusters and assess their stability, a resampling technique is applied

Objectives
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.