Abstract

Atomic line opacities play a crucial role in stellar astrophysics. They strongly modify the radiative transfer in stars, therefore impacting their physical structure. Ultimately, most of our knowledge of stellar population systems (stars, clusters, galaxies, etc.) relies on the accuracy with which we understand and reproduce the stellar spectra. With such a wide impact on Astronomy, it would be ideal to have access to a complete, accurate and precise list of atomic transitions. This, unfortunately, is not the case. Few atomic transitions had their parameters actually measured in the laboratory, and for most of the lines the parameters were calculated with low precision atomic energy levels. Only a small fraction of the lines were calibrated empirically. For the purpose of computing a stellar spectral grid with a complete coverage of spectral types and luminosity classes, this situation is rather limiting. We have implemented an innovative method to perform a robust calibration of atomic line lists used by spectral synthesis codes called ALiCCE: Atomic Lines Calibration using the Cross-Entropy algorithm. Here we describe the implementation and validation of the method, using synthetic spectra which simulates the signal-to-noise, spectral resolution and rotational velocities typical of high quality observed spectra. We conclude that the method is efficient for calibrating atomic line lists.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.