Abstract

Many commonly well-performing convolutional neural network models have shown to be susceptible to input data perturbations, indicating a low model robustness. To reveal model weaknesses, adversarial attacks are specifically optimized to generate small, barely perceivable image perturbations that flip the model prediction. Robustness against attacks can be gained by using adversarial examples during training, which in most cases reduces the measurable model attackability. Unfortunately, this technique can lead to robust overfitting, which results in non-robust models. In this paper, we analyze adversarially trained, robust models in the context of a specific network operation, the downsampling layer, and provide evidence that robust models have learned to downsample more accurately and suffer significantly less from downsampling artifacts, aka. aliasing, than baseline models. In the case of robust overfitting, we observe a strong increase in aliasing and propose a novel early stopping approach based on the measurement of aliasing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.