Abstract

In this chapter we examine one of two main classes of algorithms: quantum algorithms that solve problems with a complexity that is superpolynomially less than the complexity of the best-known classical algorithm for the same problem. That is, the complexity of the best-known classical algorithm cannot be bounded above by any polynomial in the complexity of the quantum algorithm. The algorithms we will detail all make use of the quantum Fourier transform (QFT). We start off the chapter by studying the problem of quantum phase estimation, which leads us naturally to the QFT. Section 7.1 also looks at using the QFT to find the period of periodic states, and introduces some elementary number theory that is needed in order to post-process the quantum algorithm. In Section 7.2, we apply phase estimation in order to estimate eigenvalues of unitary operators. Then in Section 7.3, we apply the eigenvalue estimation algorithm in order to derive the quantum factoring algorithm, and in Section 7.4 to solve the discrete logarithm problem. In Section 7.5, we introduce the hidden subgroup problem which encompasses both the order finding and discrete logarithm problem as well as many others. This chapter by no means exhaustively covers the quantum algorithms that are superpolynomially faster than any known classical algorithm, but it does cover the most well-known such algorithms. In Section 7.6, we briefly discuss other quantum algorithms that appear to provide a superpolynomial advantage. To introduce the idea of phase estimation, we begin by noting that the final Hadamard gate in the Deutsch algorithm, and the Deutsch–Jozsa algorithm, was used to get at information encoded in the relative phases of a state. The Hadamard gate is self-inverse and thus does the opposite as well, namely it can be used to encode information into the phases. To make this concrete, first consider H acting on the basis state |x⟩ (where x ∊ {0, 1}). It is easy to see that You can think about the Hadamard gate as having encoded information about the value of x into the relative phases between the basis states |0⟩ and |1⟩.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.