Abstract

Non-negativity is vital for a latent factor (LF)-based model to preserve the important feature of a high-dimensional and sparse (HiDS) matrix in recommender systems, i.e., none of its entries is negative. Current non-negative models rely on constraints-combined training schemes. However, they lack flexibility, scalability, or compatibility with general training schemes. This work aims to perform unconstrained non-negative latent factor analysis (UNLFA) on HiDS matrices. To do so, we innovatively transfer the non-negativity constraints from the decision parameters to the output LFs, and connect them through a single-element-dependent mapping function. Then we theoretically prove that by making a mapping function fulfill specific conditions, the resultant model is able to represent the original one precisely. We subsequently design highly efficient UNLFA algorithms for recommender systems. Experimental results on four industrial-size HiDS matrices demonstrate that compared with four state-of-the-art non-negative models, a UNLFA-based model obtains advantage in prediction accuracy for missing data and computational efficiency. Moreover, such high performance is achieved through its unconstrained training process which is compatible with various general training schemes, on the premise of fulfilling non-negativity constraints. Hence, UNLFA algorithms are highly valuable for industrial applications with the need of performing non-negative latent factor analysis on HiDS matrices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call