Abstract
In this article we introduce all the ingredients to develop adaptive isogeometric methods based on hierarchical B-splines. In particular, we give precise definitions of local refinement and coarsening that, unlike previously existing methods, can be understood as the inverse of each other. We also define simple and intuitive data structures for the implementation of hierarchical B-splines, and algorithms for refinement and coarsening that take advantage of local information. We complete the paper with some simple numerical tests to show the performance of the data structures and algorithms, that have been implemented in the open-source Octave/Matlab code GeoPDEs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.