Abstract

We consider the computation of the matrix logarithm by using numerical quadrature. The efficiency of numerical quadrature depends on the integrand and the choice of quadrature formula. The Gauss–Legendre quadrature has been conventionally employed; however, the convergence could be slow for ill-conditioned matrices. This effect may stem from the rapid change of the integrand values. To avoid such situations, we focus on the double exponential formula, which has been developed to address integrands with endpoint singularity. In order to utilize the double exponential formula, we must determine a suitable finite integration interval, which provides the required accuracy and efficiency. In this paper, we present a method for selecting a suitable finite interval based on an error analysis as well as two algorithms, and one of these algorithms is an adaptive quadrature algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.