Abstract

The problem of striking material and energy balances from the data received by thermal power plant computerized automation systems from the technical accounting systems with the accuracy determined by the metrological characteristics of serviceable calibrated instruments is formulated using the mathematical apparatus of ridge regression method. A graph theory based matrix model of material and energy flows in systems having an intricate structure is proposed, using which it is possible to formalize the solution of a particular practical problem at the stage of constructing the system model. The problem of striking material and energy balances is formulated taking into account different degrees of trustworthiness with which the initial flow rates of coolants and their thermophysical parameters were determined, as well as process constraints expressed in terms of balance correlations on mass and energy for individual system nodes or for any combination thereof. Analytic and numerical solutions of the problem are proposed in different versions of its statement differing from each other in the adopted assumptions and considered constraints. It is shown how the procedure for striking material and energy balances from the results of measuring the flows of feed water and steam in the thermal process circuit of a combined heat and power plant affects the calculation accuracy of specific fuel rates for supplying heat and electricity. It has been revealed that the nominal values of indicators and the fuel saving or overexpenditure values associated with these indicators are the most dependent parameters. In calculating these quantities using different balance striking procedures, an error may arise the value of which is commensurable with the power plant thermal efficiency margin stipulated by the regulatory-technical documents on using fuel. The study results were used for substantiating the choice of stating the problem of striking material and fuel balances, as well as the method for solving it. With the problem statement and the solution method implemented in the real thermal power plant computerized automation systems, less biased calculation of actual thermal efficiency indicators of equipment is obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call