Abstract

To locate and correct design errors that escape pre-silicon verification, silicon debug has become a necessary step in the implementation flow of digital integrated circuits. Embedded logic analysis, which employs on-chip storage units to acquire data in real time from the internal signals of the circuit-under-debug, has emerged as a powerful technique for improving observability during in-system debug. However, as the amount of data that can be acquired is limited by the on-chip storage capacity, the decision on which signals to sample is essential when it is not known <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">a</i> <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">priori</i> where the bugs will occur. In this paper, we present accelerated algorithms for restoring circuit state elements from the traces collected during a debug session, by exploiting bitwise parallelism. We also introduce new metrics that guide the automated selection of trace signals, which can enhance the real-time observability during in-system debug.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call