Abstract
Abstract We introduce numerical algorithms for solving the inverse and direct scattering problems for the Manakov model of vector nonlinear Schrödinger equation. We have found an algebraic group of 4-block matrices with off-diagonal blocks consisting of special vector-like matrices for generalizing the scalar problem’s efficient numerical algorithms to the vector case. The inversion of block matrices of the discretized system of Gelfand–Levitan–Marchenko integral equations solves the inverse scattering problem using the vector variant the Toeplitz Inner Bordering algorithm of Levinson’s type. The reversal of steps of the inverse problem algorithm gives the solution of the direct scattering problem. Numerical tests confirm the proposed vector algorithms’ efficiency and stability. We also present an example of the algorithms’ application to simulate the Manakov vector solitons’ collision.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.