Abstract

Relevance of the problem of the development of technical means (GPR) and algorithms for processing ultra-wideband signals follows from the wide range of possibilities that these means of non-destructive testing and remote sensing provides, together with the potential of modern computing tools and software. Of particular interest in this regard are the results obtained by using various effects associated with a change in the polarization state of both primary (probing) pulses and signals reflected from complex multilayer media to detect defects in them. This is due to the possibility of not only quickly detecting heterogeneities, but also with the relatively low cost of such work. The purpose of the work is a review of various technical means (pulsed georadars) and signal processing methods for detecting various internal inhomogeneities in plane-layered media. These heterogeneities include, in addition to various internal communications elements (cables) and technical elements (drainage pipes), also dangerous externally invisible defects - subsurface cracks and delamination (interruption of contact between the layers). Materials and methods. The paper provides an overview of methods developed by the author, among others, which are designed to solve primarily the practical problems of detecting subsurface inhomogeneities and defects in plane-layered media. The physical basis for the creation of these methods was the result of many years of research by the author related to the analysis of the polarization state of complex (including pulsed) signals scattered by various objects. Results. The basis of the considered results is made up of both scientific articles and patents of Ukraine for inventions and utility models obtained by the author. Conclusions. The review of the results and various methods presented in the article is another confirmation of the wide possibilities offered by new means of remote sensing and non-destructive testing. These tools include not only the devices themselves (elements for obtaining primary data), but also information processing algorithms and software, combined into a single methodology for collecting, processing and subsequent storage of data on the current state of the examined technical and natural objects.

Highlights

  • Актуальність проблеми розвитку технічних засобів і алгоритмів обробки надширокосмугових сигналів випливає з широкого спектру можливостей, які дають ці засоби неруйнівного контролю і дистанційного зондування спільно з потенціалом сучасних обчислювальних засобів і програмного забезпечення

  • Relevance of the problem of the development of technical means (GPR) and algorithms for processing ultrawideband signals follows from the wide range of possibilities that these means of non-destructive testing and remote sensing provides, together with the potential of modern computing tools and software

  • Of particular interest in this regard are the results obtained by using various effects associated with a change in the polarization state of both primary pulses and signals reflected from complex multilayer media to detect defects in them

Read more

Summary

ПОСТАНОВКА ЗАДАЧИ ОБНАРУЖЕНИЯ ТРЕЩИН И МЕТОД РЕШЕНИЯ

Теоретические основы решения обратных задач с привлечением информации о поляризационном состоянии дифрагированных на неоднородностях полей были рассмотрены ранее в [19,20,21]. Который следует из этих формул, заключается в том, что в общем виде при наклонном падении зависимость коэффициентов отражения и преломления от угла падения, и, главное, от соотношения между ортогональными компонентами (они отмечены знаками и ) является нелинейной. При решении задачи были использованы следующие предположения: а) влияние неровностей поверхности слоев (внутренних границ) покрытия на параметры отраженного сигнала незначительно и им можно пренебречь; б) изменение толщины каждого слоя от участка к участку незначительно и им также можно пренебречь (это подтвердили как результаты моделирования, так и проведенных лабораторных экспериментов); в) моделью трещины был прямоугольный параллелепипед – простейший случай. Б) измерение времени задержки – времени прохождения сигнала от антенны до второй (нижней) границы верхнего (первого) слоя ( t1); в) вычисление собственно глубины залегания трещины по формуле: h1. Результатом работы алгоритма являются следующие параметры: местоположение трещины, глубина ее залегания и ширина раскрыва

КРАТКИЙ ОБЗОР ПАТЕНТОВ
СПИСОК ЛИТЕРАТУРЫ
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.