Abstract
A procedure for reconstructing solid models of conventional engineering objects from a multiple-view, 3D point cloud is described. (Conventional means bounded by simple analytical surfaces, swept surfaces and blends.) Emphasis is put on producing accurate and topologically consistent boundary representation models, ready to be used in computer aided design and manufacture. The basic phases of our approach to reverse engineering are summarised, and related computational difficulties are analysed. Four key algorithmic components are presented in more detail: efficiently segmenting point data into regions; creating linear extrusions and surfaces of revolution with smooth, constrained profiles; creating the topology of B-rep models; and finally adding blends. The application of these algorithms in an integrated system is illustrated by means of various examples, including a well-known reverse engineering benchmark.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.