Abstract

We consider several known algorithms and introduce some new algorithms that can be used to calculate the probability of return to the initial level in the Markov stochastic fluid flow model. We give the physical interpretations of these algorithms within the fluid flow environment. The rates of convergence are explained in terms of the physical properties of the fluid flow processes. We compare these algorithms with respect to the number of iterations required and their complexity. The performance of the algorithms depends on the nature of the process considered in the analysis. We illustrate this with examples and give appropriate recommendations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.