Abstract

ObjectivesSelective Retina Therapy (SRT) uses microbubble formation (MBF) to target retinal pigment epithelium (RPE) cells selectively while sparing the neural retina and the choroid. Intra- and inter-individual variations of RPE pigmentation makes frequent radiant exposure adaption necessary. Since selective RPE cell disintegration is ophthalmoscopically non-visible, MBF detection techniques are useful to control adequate radiant exposures. It was the purpose of this study to evaluate optoacoustically based MBF detection algorithms. MethodsFifteen patients suffering from central serous chorioretinopathy and diabetic macula edema were treated with a SRT laser using a wavelength of 527 nm, a pulse duration of 1.7 µs and a pulse energy ramp (15 pulses, 100 Hz repetition rate). An ultrasonic transducer for MBF detection was embedded in a contact lens. RPE damage was verified with fluorescence angiography. ResultsAn algorithm to detect MBF as an indicator for RPE cell damage was evaluated. Overall, 4646 irradiations were used for algorithm optimization and testing. The tested algorithms were superior to a baseline model. A sensitivity/specificity pair of 0.96/1 was achieved. The few false algorithmic decisions were caused by unevaluable signals. ConclusionsThe algorithm can be used for guidance or automatization of microbubble related treatments like SRT or selective laser trabeculoplasty (SLT).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call