Abstract

The three-dimensional diffraction problem of stationary acoustic waves on a homogeneous inclusion is considered. It is reduced to the weakly singular boundary Fredholm integral equations of the first kind with one unknown function, each of which is conditionally equivalent to the original problem. By using the original method of averaging the integral operators kernels, these equations are approximated by systems of linear algebraic equations. The resulting systems are solved numerically by the generalized minimal residual method (GMRES). Then the solution of the initial problem is calculated. To find the solution on the spectrum of integral operators, where the condition of equivalence of integral equations to the original problem is violated, the interpolation solution method is proposed. It does not require knowledge of the spectrum and allows us to find the approximated solutions with high accuracy. The proposed algorithms have been implemented in the computing cluster of Computing Center FEB RAS. The results of the calculations that allow us to assess the possibilities of this approach are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.