Abstract
AbstractWe consider the transportation problem of determining nonnegative shipments from a set of m warehouses with given availabilities to a set of n markets with given requirements. Three objectives are defined for each solution: (i) total cost, TC, (ii) bottleneck time, BT (i.e., maximum transportation time for a positive shipment), and (iii) bottleneck shipment, SB (i.e., total shipment over routes with bottleneck time). An algorithm is given for determining all efficient (pareto‐optimal or nondominated) (TC, BT) solution pairs. The special case of this algorithm when all the unit cost coefficients are zero is shown to be the same as the algorithms for minimizing BT. provided by Szwarc and Hammer. This algorithm for minimizing BT is shown to be computationally superior. Transportation or assignment problems with m=n=100 average about a second on the UNIVAC 1108 computer (FORTRAN V)) to the threshold algorithm for minimizing BT. The algorithm is then extended to provide not only all the efficient (TC, BT) solution pairs but also, for each such BT, all the efficient (TC, SB) solution pairs. The algorithms are based on the cost operator theory of parametric programming for the transportation problem developed by the authors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.