Abstract

The new generation of packet-switching networks is expected to support a wide range of communication-intensive real-time multimedia applications. A key issue in the area is how to devise reasonable packet-switching network design methodologies that allow the choice of the most adequate set of network resources for the delivery of a given mix of services with the desired level of end-to-end Quality of Service (e2e QoS) and, at the same time, consider the traffic dynamics of today’s packet-switching networks. In this paper, we focus on problems that arise when dealing with this subject, namely Buffer Assignment (BA), Capacity Assignment (CA), Flow and Capacity Assignment (FCA), Topology, Flow and Capacity Assignment (TCFA) problems. Our proposed approach maps the end-user’s performance constraints into transport-layer performance constraints first, and then into network-layer performance constraints. This mapping is then considered together with a refined TCP/IP traffic modeling technique, that is both simple and capable of producing accurate performance estimates, for general-topology packet-switching design networks subject to realistic traffic patterns. Subproblems are derived from a general design problem and a collection of heuristic algorithms are introduced for compute approximate solutions. We illustrate examples of network planning/dimensioning considering Virtual Private Networks (VPNs).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.