Abstract

Novel algorithms for the simultaneous cost/resource-constrained allocation of registers, arithmetic units, and interconnect in a data path have been developed. The entire allocation process can be formulated as a two-dimensional placement problem of microinstructions in space and time. This formulation readily lends itself to the use of a variety of heuristics for solving the allocation problem. The authors present simulated-annealing-based algorithms which provide excellent solutions to this formulation of the allocation problem. These algorithms operate under a variety of user-specifiable constraints on hardware resources and costs. They also incorporate conditional resource sharing and simultaneously address all aspects of the allocation problem, namely register, arithmetic unit, and interconnect allocation, while effectively exploring the existing tradeoffs in the design space.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.