Abstract

CAT(0) metric spaces and hyperbolic spaces play an important role in combinatorial and geometric group theory. In this paper, we present efficient algorithms for distance problems in CAT(0) planar complexes. First of all, we present an algorithm for answering single-point distance queries in a CAT(0) planar complex. Namely, we show that for a CAT(0) planar complex [Formula: see text] with n vertices, one can construct in O(n2 log n) time a data structure [Formula: see text] of size O(n2) so that, given a point [Formula: see text], the shortest path γ(x, y) between x and the query point y can be computed in linear time. Our second algorithm computes the convex hull of a finite set of points in a CAT(0) planar complex. This algorithm is based on Toussaint's algorithm for computing the convex hull of a finite set of points in a simple polygon and it constructs the convex hull of a set of k points in O(n2 log n + nk log k) time, using a data structure of size O(n2 + k).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call