Abstract

The problem of covering a compact planar set $M$ with a set of congruent disks is considered. It is assumed that the centers of the circles belong to some lattice. The criterion of optimality in one case is the minimum of the number of elements of the covering, and in the other case — the minimum of the Hausdorff deviation of the union of elements of the covering from the set $M$. To solve the problems, transformations of parallel transfer and rotation with the center at the origin can be applied to the lattice. Statements concerning sufficient conditions for sets of circles that provide solutions to the problems are proved. Numerical algorithms based on minimizing the Hausdorff deviation between two flat compacts are proposed. Solutions of a number of examples are given for various figures of $M$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.