Abstract

This paper presents a modified controller and expanded algorithms for automatically positioning cardiac ultrasound imaging catheters within the heart to improve treatment of cardiac arrhythmias such as atrial fibrillation. Presented here are a new method for controlling the position and orientation of a catheter, smoother and more accurate automated catheter motion, and initial results of image processing into clinically useful displays. Ultrasound imaging (intracardiac echo, or ICE) catheters are steered by four actuated degrees of freedom (DOF) to produce bi-directional bending in combination with handle rotation and translation. Closed form solutions for forward and inverse kinematics enable position control of the catheter tip. Additional kinematic calculations enable 1-DOF angular control of the imaging plane. The combination of positioning with imager rotation enables a wide range of visualization capabilities, such as recording a sequence of ultrasound images and reconstructing them into 3D or 4D volumes for diagnosis and treatment. The algorithms were validated with a robotic test bed and the resulting images were reconstructed into 3D volumes. This capability may improve the efficiency and effectiveness of intracardiac catheter interventions by allowing visualization of soft tissues or working instruments. The methods described here are applicable to any long thin tendon-driven tool (with single or bi-directional bending) requiring accurate tip position and orientation control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.