Abstract
AbstractIn algorithmic work, algorithms execute operational and management tasks such as work allocation, task tracking and performance evaluation. Humans and algorithms interact with one another to accomplish work so that the algorithm takes on the role of a co‐worker. Human–algorithm interactions are characterised by problematic issues such as absence of mutually co‐constructed dialogue, lack of transparency regarding how algorithmic outputs are generated, and difficulty of over‐riding algorithmic directive – conditions that create lack of clarity for the human worker. This article examines human–algorithm role interactions in algorithmic work. Drawing on the theoretical framing of organisational roles, we theorise on the algorithm as role sender and the human as the role taker. We explain how the algorithm is a multi‐role sender with entangled roles, while the human as role taker experiences algorithm‐driven role conflict and role ambiguity. Further, while the algorithm records all of the human's task actions, it is ignorant of the human's cognitive reactions – it undergoes what we conceptualise as ‘broken loop learning’. The empirical context of our study is algorithm‐driven taxi driving (in the United States) exemplified by companies such as Uber. We draw from data that include interviews with 15 Uber drivers, a netnographic study of 1700 discussion threads among Uber drivers from two popular online forums, and analysis of Uber's web pages. Implications for IS scholarship, practice and policy are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.