Abstract
We analyze the statistical performance of identification of stochastic dynamical systems with non-linear measurement sensors. This includes stochastic Wiener systems, with linear dynamics, process noise and measured by a non-linear sensor with additive measurement noise. There are many possible system identification methods for such systems, including the maximum likelihood (ML) method and the prediction error method. The focus has mostly been on algorithms and implementation, and less is known about the statistical performance and the corresponding Cramer–Rao lower bound (CRLB) for identification of such non-linear systems. We derive expressions for the CRLB and the asymptotic normalized covariance matrix for certain Gaussian approximations of Wiener systems to show how a non-linear sensor affects the accuracy compared to a corresponding linear sensor. The key idea is to take second order statistics into account by using a common parametrization of the mean and the variance of the output process. This analysis also leads to an ML motivated identification method based on the conditional mean predictor and a Gaussian distribution approximation. The analysis is supported by numerical simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.