Abstract
Multi-adaptive Galerkin methods are extensions of the standard continuous and discontinuous Galerkin methods for the numerical solution of initial value problems for ordinary or partial differential equations. In particular, the multi-adaptive methods allow individual and adaptive time steps to be used for different components or in different regions of space. We present algorithms for efficient multi-adaptive time-stepping, including the recursive construction of time slabs and adaptive time step selection. We also present data structures for efficient storage and interpolation of the multi-adaptive solution. The efficiency of the proposed algorithms and data structures is demonstrated for a series of benchmark problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.