Abstract
Investors typically rely on a mix of experience, intuition, knowledge of economic fundamentals and real-time information to make informed choices and try to get as high a rate of return as possible. Their decisions are customarily more instinct-driven than methodical. Propelled by the need for numerically inspired judgments, ever stronger within the financial community, in recent years the usage of computational and mathematical tools has been taking root. In this work we used a Long Short-Term Memory (LSTM) Network trained on historical prices to predict future daily closing prices of several stocks listed on the Standard & Poor 500 (S&P500) index. We compared the predictions of our LSTM network with those produced by another state-of-the-art approach, the Hidden Markov Model (HMM), in order to validate our findings. We then fed our forecasts into aMarkowitz Portfolio Optimization (PO) procedure to identify the best trading strategy. The purpose of PO, which allows for simultaneous and optimal trading of multiple stocks, is to compute a set of daily weights representing the portion of initial capital to be invested in each company. Our empirical results highlight two facts: Firstly, our LSTM model achieves higher accuracy than the standard HMM approach. Secondly, by trading various stocks at the same time we can obtain a higher rate of return than is possible by using the single stock strategy, while also greatly enhancing the real-world applicability of our model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.