Abstract

Reinforcement learning (RL) is a machine learning answer to the optimal control problem. It consists of learning an optimal control policy through interactions with the system to be controlled, the quality of this policy being quantified by the so-called value function. A recurrent subtopic of RL concerns computing an approximation of this value function when the system is too large for an exact representation. This survey reviews state-of-the-art methods for (parametric) value function approximation by grouping them into three main categories: bootstrapping, residual, and projected fixed-point approaches. Related algorithms are derived by considering one of the associated cost functions and a specific minimization method, generally a stochastic gradient descent or a recursive least-squares approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.