Abstract

Summary form only given. Nucleic acids have proven to be remarkably versatile as an engineering material for chemical tasks including the storage of information, catalyzing reactions creating and breaking bonds, mechanical manipulation using molecular motors, and constructing supramolecular structures. This talk will focus particularly on molecular self-assembly, giving examples of engineered DNA tiles that crystallize into two-dimensional sheets, one-dimensional tubes and ribbons, and information-guided patterns such as a Sierpinski triangle and a binary counter. A theme is how cooperative binding can be used to control nucleation and direct selective tile attachment. Such algorithmic self-assembly may provide a bottom-up fabrication method for creating complex, well-defined supramolecular structures that can be used as scaffolds or templates for applications such as arranging molecular electronic components into active circuits

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.