Abstract

Algorithmic regularization uses a transformation of the equations of motion such that the leapfrog algorithm produces exact trajectories for two-body motion as well as regular results in numerical integration of the motion of strongly interacting few-body systems. That algorithm alone is not sufficiently accurate and one must use the extrapolation method for improved precision. This requires that the basic leapfrog algorithm be time-symmetric, which is not directly possible in the case of velocity-dependent forces, but is usually obtained with the help of the implicit midpoint method. Here we suggest an alternative explicit algorithmic regularization algorithm which can handle velocity-dependent forces. This is done with the help of a generalized midpoint method to obtain the required time symmetry, thus eliminating the need for the implicit midpoint method and allowing the use of extrapolation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.