Abstract

Let G be a finitely generated virtually-free group. We consider the Birget–Rhodes expansion of G, which yields an inverse monoid and which is denoted by IM (G) in the following. We show that for a finite idempotent presentation P, the word problem of a quotient monoid IM (G)/P can be solved in linear time on a RAM. The uniform word problem, where G and the presentation P are also part of the input, is EXPTIME-complete. With IM (G)/P we associate a relational structure, which contains for every rational subset L of IM (G)/P a binary relation, consisting of all pairs (x,y) such that y can be obtained from x by right multiplication with an element from L. We prove that the first-order theory of this structure is decidable. This result implies that the emptiness problem for Boolean combinations of rational subsets of IM (G)/P is decidable, which, in turn implies the decidability of the submonoid membership problem of IM (G)/P. These results were known previously for free groups, only. Moreover, we provide a new algorithmic approach for these problems, which seems to be of independent interest even for free groups. We also show that one cannot expect decidability results in much larger frameworks than virtually-free groups because the subgroup membership problem of a subgroup H in an arbitrary group G can be reduced to a word problem of some IM (G)/P, where P depends only on H. A consequence is that there is a hyperbolic group G and a finite idempotent presentation P such that the word problem is undecidable for some finitely generated submonoid of IM (G)/P. In particular, the word problem of IM (G)/P is undecidable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call